1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
use std::convert::{AsRef, AsMut, From};
use std::cell::{Cell, RefCell};
use std::marker::PhantomData;
use std::fmt::{Debug, Formatter};
use std::ops::Range;


use super::{BezCurve, Point2d, Float, Point, lerp};

/// A struct that contains range information for slicing, used for slicing into the global factor
/// vector. The reason this is used instead of stdlib's `Range` struct is that `Range` does not
/// implement Copy, which means we have to use `RefCell`s instead of `Cell`s for interior mutability.
#[derive(Copy, Clone)]
struct RangeSlice {
    start: usize,
    end: usize
}

impl RangeSlice {
    #[inline]
    fn new(start: usize, end: usize) -> RangeSlice {
        RangeSlice {
            start: start,
            end: end
        }
    }

    fn as_range(&self) -> Range<usize> {
        self.start..self.end
    }

    fn len(&self) -> usize {
        self.end - self.start
    }
}

fn combination(n: u64, k: u64) -> u64 {
    factorial(n) / (factorial(k) * factorial(n - k))
}

fn factorial(mut n: u64) -> u64 {
    let mut accumulator: u64 = 1;
    while n > 0 {
        accumulator = accumulator.checked_mul(n).expect("Attempted to create Bézier curve with combination that overflow u64; decrease curve order");
        n -= 1;
    }
    accumulator
}

/// Given the `order` and references to the `factors`, `dfactors`, and `vec` cells, update the
/// cells to contain accurate information about the factors of the order. 
fn update_factors(order: usize, factors: &Cell<RangeSlice>, dfactors: &Cell<RangeSlice>, vec: &RefCell<Vec<u64>>) {
    if factors.get().len() != order + 1 {
        let mut vec = vec.borrow_mut();
        // Remove everything from the vector without freeing memory
        unsafe{ vec.set_len(0) };

        // The vector stores both the factors of the order and the order's derivative, and this is the
        // length necessary to contain those factors.
        let new_len = (order + 1) * 2 - 1;
        if vec.capacity() < new_len {
            let reserve_amount = new_len - vec.capacity();
            vec.reserve(reserve_amount);
        }

        {
            let order = order as u64;

            for k in 0..order + 1 {
                vec.push(combination(order, k));
            }

            for k in 0..order {
                vec.push(combination(order - 1, k));
            }
        }

        factors.set(RangeSlice::new(0, order + 1));
        dfactors.set(RangeSlice::new(order + 1, vec.len()));
    }
}


/// An n-order bezier curve. The `from_slice`, `split`, and `split_unbounded` functions currently do not work.
#[derive(Clone)]
pub struct NBez<F, P = Point2d<F>, C = Vec<P>> 
        where F: Float,
              P: Point<F>,
              C: AsRef<[P]> + AsMut<[P]> {
    points: C,
    factor_vec: RefCell<Vec<u64>>,
    factors: Cell<RangeSlice>,
    dfactors: Cell<RangeSlice>,
    phantom: PhantomData<(F, P)>
}

impl<F, P, C> From<C> for NBez<F, P, C>
        where F: Float,
              P: Point<F>,
              C: AsRef<[P]> + AsMut<[P]> {
    fn from(container: C) -> NBez<F, P, C> {
        NBez::from_container(container)
    }
}

impl<F, P, C> NBez<F, P, C>
        where F: Float,
              P: Point<F>,
              C: AsRef<[P]> + AsMut<[P]> {
    #[inline]
    pub fn from_container(points: C) -> NBez<F, P, C> {
        if points.as_ref().len() >= 22 {
            panic!("Cannot create Bézier polynomials with an order >= 21")
        }

        NBez {
            points: points,
            factor_vec: RefCell::new(Vec::new()),
            factors: Cell::new(RangeSlice::new(0, 0)),
            dfactors: Cell::new(RangeSlice::new(0, 0)),
            phantom: PhantomData
        }
    }

    #[inline]
    pub fn unwrap(self) -> C {
        self.points
    }
}

impl<F, P, C> BezCurve<F> for NBez<F, P, C> 
        where F: Float,
              P: Point<F>,
              C: AsRef<[P]> + AsMut<[P]> {
    type Point = P;
    type Elevated = NBez<F, P, Vec<P>>;

    /// Currently non-functional; returns `None`
    fn from_slice(_: &[P]) -> Option<NBez<F, P, C>> {
        None
    }

    fn interp_unbounded(&self, t: F) -> P {
        let points = self.points.as_ref();
        update_factors(self.order(), &self.factors, &self.dfactors, &self.factor_vec);
        let factors = &self.factor_vec.borrow()[self.factors.get().as_range()];


        let t1 = F::from_f32(1.0).unwrap() - t;
        let order = factors.len() - 1;
        let mut acc = P::zero();
        let mut factor = 0;

        for point in points.iter() {
            acc = acc + *point * 
                        t.powi(factor as i32) *
                        t1.powi((order - factor) as i32) *
                        F::from_u64(factors[factor]).unwrap();
            factor += 1;
        }            
        acc
    }

    fn slope_unbounded(&self, t: F) -> P::Vector {
        let points = self.points.as_ref();
        update_factors(self.order(), &self.factors, &self.dfactors, &self.factor_vec);
        let dfactors = &self.factor_vec.borrow()[self.dfactors.get().as_range()];

        let t1 = F::from_f32(1.0).unwrap() - t;
        let order = dfactors.len() - 1;
        let mut acc = P::zero();
        let mut factor = 0;
        let mut point_last = points[0].clone();

        for point in points[1..].iter().map(|p| *p) {
            acc = acc + (point - point_last) *
                        t.powi(factor as i32) *
                        t1.powi((order-factor) as i32) *
                        F::from_u64(dfactors[factor] * (order + 1) as u64).unwrap();
            point_last = point;
            factor += 1;
        }            
        acc.into()
    }

    fn elevate(&self) -> NBez<F, P, Vec<P>> {        
        let points = self.points.as_ref();
        let order = self.order() + 1;
        let order_f = F::from_usize(order).unwrap();
        
        // Elevated points
        let mut el_points = Vec::with_capacity(order + 1);
        el_points.push(points[0]);

        let mut prev_p = points[0];
        for (i, p) in points.iter().map(|p| *p).enumerate().skip(1) {
            el_points.push(lerp(p, prev_p, F::from_usize(i).unwrap()/order_f));

            prev_p = p;
        }

        el_points.push(points[self.order()]);
        NBez::from_container(el_points)
    }

    /// Currently non-functional; returns `None`
    fn split(&self, _: F) -> Option<(NBez<F, P, C>, NBez<F, P, C>)> {
        None
    }

    /// Currently non-functional; panics with unimplemented
    fn split_unbounded(&self, _: F) -> (NBez<F, P, C>, NBez<F, P, C>) {
        unimplemented!()
    }

    fn order(&self) -> usize {
        self.points.as_ref().len()-1
    }
}

impl<F, P, C> AsRef<C> for NBez<F, P, C>
        where F: Float,
              P: Point<F>,
              C: AsRef<[P]> + AsMut<[P]> {
    fn as_ref(&self) -> &C {
        &self.points
    }
}

impl<F, P, C> AsMut<C> for NBez<F, P, C>
        where F: Float,
              P: Point<F>,
              C: AsRef<[P]> + AsMut<[P]> {
    fn as_mut(&mut self) -> &mut C {
        &mut self.points
    }
}

impl<F, P, C> AsRef<[P]> for NBez<F, P, C>
        where F: Float,
              P: Point<F>,
              C: AsRef<[P]> + AsMut<[P]> {
    fn as_ref(&self) -> &[P] {
        self.points.as_ref()
    }
}

impl<F, P, C> AsMut<[P]> for NBez<F, P, C>
        where F: Float,
              P: Point<F>,
              C: AsRef<[P]> + AsMut<[P]> {
    fn as_mut(&mut self) -> &mut [P] {
        self.points.as_mut()
    }
}

impl<F, P, C> Debug for NBez<F, P, C>
        where F: Float,
              P: Point<F>,
              C: AsRef<[P]> + AsMut<[P]> + Debug {
    fn fmt(&self, f: &mut Formatter) -> Result<(), ::std::fmt::Error> {
        f.debug_tuple("NBez")
            .field(&self.points)
            .finish()
    }
}